
GDXMRW: Interfacing GAMS and MATLAB

Michael C. Ferris∗ Rishabh Jain† Steven Dirkse‡

February 7, 2011

Abstract

This document briefly describes GDXMRW, a suite of utilities to im-
port/export data between GAMS and MATLAB (both of which the user
is assumed to have already) and to call GAMS models from MATLAB
and get results back in MATLAB. The software gives MATLAB users the
ability to use all the optimization capabilities of GAMS, and allows visu-
alization of GAMS models directly within MATLAB. As of GAMS Dis-
tribution 23.4, the most recent version is now included as part of GAMS.

1 Introduction

Optimization is becoming widely used in many application areas as can be ev-
idenced by its appearance in software packages such as Excel and MATLAB.
While the optimization tools in these packages are useful for small-scale nonlin-
ear models (and to some extent for large linear models), the lack of a capability
to compute automatic derivatives makes them impractical for large scale non-
linear optimization. In sharp contrast, modeling languages such as GAMS and
AMPL have had such a capability for many years, and have been used in many
practical large scale nonlinear applications.

On the other hand, while modeling languages have some capabilities for
data manipulation and visualization (e.g. Rutherford’s GNUPLOT), to a large
extent specialized software tools like Excel and MATLAB are much better at
these tasks.

This paper describes a link between GAMS and MATLAB. The aim of this
link is two-fold. Firstly, it is intended to provide MATLAB users with a sophis-
ticated nonlinear optimization capability. Secondly, the visualization tools of
MATLAB are made available to a GAMS modeler in an easy and extendable
manner so that optimization results can be viewed using any of the wide variety
of plots and imaging capabilities that exist in MATLAB.
∗Computer Sciences Department, University of Wisconsin – Madison, 1210 West Dayton

Street, Madison, Wisconsin 53706 (ferris@cs.wisc.edu)
†Industrial and System Engineering, University of Wisconsin - Madison, 3270 Mechanical

Engineering, 1513 University Avenue, Madison, Wisconsin 53706 (jain5@wisc.edu)
‡GAMS Development Corp., 1217 Potomac Street, NW, Washington, DC 20007

(sdirkse@gams.com)

1

2 Installation

This section describes the installation procedure for all machines. The following
section describes the testing procedure for verifying a correct installation.

First of all, you need to install both MATLAB and GAMS on your machine.
For brevity, we will assume that the GAMS system (installation) directory is
(for Windows)

c:\gams

and for non-Windows systems:

/usr/local/gams

All of the utilities come as a part of the GAMS distribution, so to use them
you have only to add the GAMS directory to the MATLAB path. One way to
do this is from the MATLAB command prompt, as follows:

>> addpath ’C:\gams’; savepath;

OR this can be done by following these steps:

1. Start MATLAB

2. Click on ’File’ tab.

3. Now click on ’Set Path’

4. Click on ’Add Folder’

5. Select GAMS directory and click ’OK’.

6. Save it and then close it.

3 Testing

The GAMS system comes with some tests that you should run to verify the
correct configuration and operation of the GDXMRW utilities. In addition,
these tests create a log file that can be useful when things don’t work as expected.
To run the tests, carry out the following steps.

1. Create a directory to run the tests in, e.g.

% mkdir \tmp

2. Extract the test models and supporting files from the GAMS test library
into the test directory.

% cd \tmp
% testlib gdxmrw03
% testlib gdxmrw04
% testlib gdxmrw05

2

3. Execute the GAMS files gdxmrw03 and gdxmrw04. These files test that
’rgdx’ and ’wgdx’ are working properly. In addition to calling MATLAB
in batch mode, they verify that the data are read and written as expected
and give a clear indication of success or failure.

4. The GAMS file gdxmrw05 tests the ’gams’ utility. Like the other tests,
it can be run in batch mode. You can also run it interactively by start-
ing MATLAB, making tmp the current directory, and running the script
“testinst.m”.

>> testinst

In addition to messages indicating success or failure, this test produces a
log file testinstlog.txt that will be useful in troubleshooting a failed
test.

4 Data Transfer

This paper suggests a better approach to import and export data from GAMS
to MATLAB using GDX files. GDX is GAMS Data Exchange file. This is a
platform independent file that stores data efficiently in binary format. Unlike
flat files, which might be machine dependent, GDX file are machine indepen-
dent. Data in GDX file is stored in sparse format and is consistent with no
duplication, contradiction or syntax errors, making it a better tool to store data
than flat files. In this paper we are going to explain three MATLAB routines,
namely ’rgdx’, ’wgdx’ and ’gams’. The first two are used to read and write data
from a GDX file into MATLAB and the third routine will take user input to
execute a gams model from MATLAB and get results back in MATLAB. All of
these routines are such designed to get data in almost same form as is stored in
a GDX file.

One of the most important features of a GDX file that we are going use in
this paper is its UEL, Unique Element List. GDX files have only one global
UEL and every element is mapped to this UEL. Thus ’rgdx’ output will contain
a global UEL as one of its fields. To write data into a GDX file, a user can enter
a local UEL for each symbol and ’wgdx’ will create one global UEL; otherwise
it will create a default UEL ranging from 1 to n.

4.1 rgdx

rgdx is the MATLAB utility to import data from a GDX file. It takes structural
input and returns data back in the form of a structure. This is a very flexible
routine as it gives user control over the output data structure. rgdx can read
set/parameter/equation/variable from a GDX file and display results in either
full/dense or sparse form. A user can also perform a filtered read to read only
certain specific elements of a symbol. It can also perform compression to remove

3

extra zeros.

This routine can take up to two arguments. The first argument is a string
input containing the GDX file name. It can be with or without the ’.gdx’ file
extension. If you call this routine with only the GDX file name as an argument
then the ’uels’ field of output structure will be the global UEL of the GDX file
and the rest of the fields of the output structure will be NULL. The second argu-
ment is a structure input containing information regarding the desired symbol.
The syntax for this call will look like:

x = rgdx(’fileName’, structure);

As an example, we read a 3D parameter, ’test3’ from ’sample.gdx’. Here we
want to display this parameter in full format but without redundant zeros. e.g.

>> s.name = ’test3’;
>> s.form = ’full’;
>> s.compress = true;
>> x = rgdx(’sample’, s)

x =

name: ’test3’
type: ’parameter’
dim: 3
val: [4x2x2 double]
form: ’full’
uels: {{1x4 cell} {1x2 cell} {1x2 cell}}

>> x.val

ans(:,:,1) =

3 4
4 5
5 6
6 7

ans(:,:,2) =

4 5
5 6
6 7
7 8

4

>> x.uels{1}

ans =

’1’ ’2’ ’3’ ’4’

>> x.uels{2}

ans =

’j1’ ’j2’

>> x.uels{3}

ans =

’k1’ ’k2’

In the following subsections we will explain the input and output structures.
Please note that except for the ’name’ and ’uels’ fields, all other string fields take
case insensitive input. All boolean fields can also be entered as string values as
well.

4.1.1 Input structure

To read a symbol from a GDX file we just need to know its name in string
format. Thus, the only mandatory field of the input structure is ’name’. e.g.

>> s.name = ’test3’;

There are several other optional fields of the input structure that give user
more control over the output sturcture. These optional fields are as follows:

1. form
This field represents the form of the output data. Output data can be
either in ’full’ or ’dense’ form or it can be in [i, j,.., val] form. In this
paper we will label [i, j,.., val] as ’sparse’. A user can enter it as string
input with value ’full’ or ’sparse’. e.g.

>> s.form = ’full’;

By default the data will be in ’sparse’ format.

2. compress
By default the uels in the output structure will be a global UEL of the
GDX file and the ’val’ field data will be indexed to this UEL. The rgdx
routine allows a user to remove rows and columns with all zeros from
the ’val’ data matrix and re-indexes the uels accordingly. This is called

5

compression of the data. This can be achieved by setting compress as true
in the input structure. Valid values for this field are true and false, either
in logical form or in string form. e.g.

>> s.compress = ’true’;

3. uels
This input field is used to perform a filtered read i.e. output data matrix
will contain values only corresponding to the entered uels. Filtered read
is very useful if user just wants certain specific set of data. Uels should be
entered in cell array form. It has to be in 1xN form with each column being
a cell array representing the uels for that dimension. Each column can
have strings, doubles or combinations of both. It also allow user to enter
double data in shorthand notation or a 1 x N matrix. For example, in the
previous example we can perform a filtered read to get data corresponding
to only the ’1’, ’3’ elements of the first index of the parameter ’test3’.

>> s.uels = {{1 3}, {’j1’, ’j2’}, {’k1’, ’k2’}};
>> s.compress = false;
>> x = rgdx(’sample’, s)

x =

name: ’test3’
type: ’parameter’
dim: 3
val: [2x2x2 double]

form: ’full’
uels: {{1x2 cell} {1x2 cell} {1x2 cell}}

>> x.val

ans(:,:,1) =

3 4
5 6

ans(:,:,2) =

4 5
6 7

Here it should be noted that we turned off compression while performing
the filtered read. This is necessary because the filtered read will give data

6

in accordance with the entered uels and the output uels will be the same
as the input uels; thus compression is not possible.

4. field
This field is required when variables or equations are to be read from a
GDX file. Sets and parameters in the GDX file do not have any field value
but variables and equations have 5 fields namely, level, marginal, lower,
upper and scale. Thus, it may be useful to enter field as an input when
reading an equation or a variable. A user can enter it as a string with
valid values being ’l/m/up/lo/s’. e.g.

>> s.field = ’m’;

By default, the output will be the level value of a variable or an equation.

5. ts
This represents the text string associated with the symbol in the GDX
file. If a user sets this field as ’true’, then the output structure will have
one more string field ’ts’ that contains the text string of the symbol. e.g.

>> s.ts = true;

6. te
GAMS allows a modeler to enter text elements for a set. Similarly to
the ’ts’ field, if a user sets ’te’ to be true in the input structure, then the
output structure will contain one more field representing the text elements
for that symbol. Please note that text elements only exist for ’sets’. e.g.

>> s.te = true;

4.1.2 Output Structure

As mentioned earlier, output of the rgdx routine will be in structure form. This
structure is very similar to the input structure. To get information regarding
any symbol, we always need to display its basic characteristics, such as its name,
type, value, uels, form, etc. An output structure will always have these fields.
The required fields are as follows:

1. name
It is same as that entered in the input structure name field i.e. the symbol
name in the GDX file.

2. val
It represents the the value matrix of the symbol. To save MATLAB mem-
ory by default it will be in ’sparse’ format. e.g.

7

>> s = rmfield(s, ’form’);
>> s

s =
name: ’test3’

compress: 0

>> x = rgdx(’sample’, s)

x =

name: ’test3’
type: ’parameter’
dim: 3
val: [16x4 double]

form: ’sparse’
uels: {{1x8 cell} {1x8 cell} {1x8 cell}}

Here val is a 16x4 double matrix. As it is a parameter; thus the last
column of the sparse matrix will represent the value and the rest (i.e. the
first three columns) will represent its index. Please note that in the case
of ’set’, the number of columns in the sparse matrix will be equal to its
dimension i.e. it doesn’t have a column representing its value. Here, the
presence of each row in the output ’val’ field corresponds to the existence
of a set element at that index. This is represented as a 1 or a zero in case
of a ’full’ matrix.

3. form
It represents the format in which the ’val’ field is being displayed. As
mentioned earlier it can be either in ’full’ or ’sparse’ form.

4. type
Whlie reading a symbol from a GDX file it is often very useful to know its
type. The rgdx routine is designed to read set, parameter, variable and
equation. This field will store this information as a string.

5. uels
This represents the unique element listing of the requested symbol in the
form of a cell array. It is a 1 x N cell array, where N is the dimension
of the symbol. Each column of this array consists of string elements. By
default, the output uels will be the same as the global uel of the GDX file,
but it can be reduced to element specific local uels if compress is set to be
true in the input structure. If a user is making a filtered read, i.e. calling
rgdx with input uels then the output uels will be essentially the same as
the input uels.

6. dim

8

It is a scalar value representing the dimension of the symbol.

Apart from these necessary fields there are a few additional fields as well.
They are as follows:

7. field
If we are reading variables or equations, then it becomes useful to know
which field we had read. This information is displayed via this field in the
form of a string.

8. ts
It display the explanatory text string associated with the symbol. This
field only exists in the output structure if the ’ts’ field is set as ’true’ in
the input structure.

9. te
It is an N dimensional cell array representing the text elements associated
with each index of the set. This field only exists in the output structure if
the ’te’ field is set as true in the input structure and the symbol is a set.

4.2 wgdx

wgdx is a MATLAB routine to create a GDX file containing MATLAB data.
Similar to the rgdx routine, it takes input in structural form but it can write
multiple symbols into a single GDX file in one call. Its first argument is a string
input for the GDX file name to be created. Similarly to rgdx, it can be with
or without the ’.gdx’ file extension. The rest of the arguments are structural
input, each containing data for different symbols to be writen in the GDX file.
e.g.

>>wgdx(’fileName’, s1, s2 ...);

If the GDX file already exists in the MATLAB current directory, then wgdx
will overwrite it; otherwise a new file will be created. After a successful run,
it doesn’t return anything back into MATLAB. Most of the fields of its input
structure are the same as those of the rgdx output structure. e.g.

>> s.name = ’l’;
>> s.uels = {{’i1’, ’i2’, ’i3’}, {’j1’, ’j2’}};
>> c.name = ’par’;
>> c.type = ’parameter’;
>> c.val = eye(3);
>> c.form = ’full’;
>> c.ts = ’3 x 3 identity’;
>> wgdx(’foo’, s, c)

Here we used the wgdx routine to create foo.gdx that contains a set ’l’ and
a parameter ’par’. In the following section we will explain the input fields in
detail.

9

4.2.1 Input Structure

Necessary fields required to represent any symbol are as follows:

1. name
It is a string input representing the name of the symbol.

2. val
It represents the value matrix of the parameter or set. It can be entered in
either full or sparse format, whichever is convenient to the user, but make
sure to specify the corresponding format as string input in the ’form’ field.
By default the value matrix is assumed to be in sparse format.

3. type
It is a string input to specify the type of the symbol. The wgdx routine
can write a set or parameter into the GDX file. In the previous example,
we didn’t specify the type for structure ’s’ because by default it is assumed
to be a set.

4. form
This is a string input representing the format in which the val matrix has
been entered. By default it is assumed that the data is specified in sparse
format.

5. uels
Similarly to the rgdx uels field. this represents the local unique element
listing of the symbol in an 1 x N cell array form. Each column of this cell
array can contain string or double or both. If a user enters the structure
with only two fields, name and uels, as in the previous example (structure
s), then the wgdx call will create a full set corresponding to the global
uels. i.e.

set a /i1*i3/;
set b /j1*j2/;
set l(a,b);
l(a,b) = yes;

Optional fields are as follow:

6. dim
This field is useful when a user wants to write a zero dimensional or 1
dimensional data in full format. As every data matrix in MATLAB is
at least 2D, it becomes necessary to indicate its dimension for writing
purposes.

7. ts
This is the text string that goes with the symbol. If nothing is entered
then ’MATLAB data from GDXMRW’ will be written in the GDX file.

10

5 Calling GAMS model from MATLAB

Until now we have discussed the data Import/Export utility between MATLAB
and GAMS. In this section, we will discuss a new MATLAB utility ’gams’ that
initializes a GAMS model with MATLAB data then executes GAMS on that
model and bring the results back into MATLAB. This ’gams’ routine is based
on the same design as rgdx and wgdx but instead it does everything in one call.
This routine can take multiple input arguments and can return multiple output
arguments. Its standard syntax is as follows:

>> [x1, x2, x3] = gams(’model’, s1, s2.., c1, c2..);

Here note that the first argument of gams is the GAMS model name plus any
user specific command line settings. If a user wants to solve the given model
(in this case found in qp.gms) using a different solver then it can be done by
adding that solver to the GAMS model name as “qp nlp=baron”. This feature
allows a user to change the execution time behaviour of the model.

The rest of the input arguments of GAMS are structures. Their positioning
is not important. These structures are of two kinds, one similar to the input
structure of wgdx and the other structure will have just two string fields, name
and val. This latter structure is used to set or overwrite values in the model using
the “$set” variables syntax of GAMS. We will explain it in detail a later section.

The first step is to generate a working GAMS model. For example, we can
set up a simple model file to solve a quadratic program

minx
1
2xT Qx + cT x

subject to Ax ≥ b, x ≥ 0

The GAMS model for this quadratic problem is as follows:

$set matout "’matsol.gdx’, x, dual ";

set i /1*2/,
j /1*3/;

alias (j1,j);

parameter
Q(j,j1) /

1 .1 1.0
2 .2 1.0
3 .3 1.0 /,

A(i,j) /
1 .1 1.0
1 .2 1.0
1 .3 1.0
2 .1 -1.0

11

2 .3 1.0 /,
b(i) /

1 1.0
2 1.0 /

c(j) /
1 2.0 /;

$if exist matdata.gms $include matdata.gms

variable obj;
positive variable x(j);

equation cost, dual(i);

cost.. obj =e=
0.5*sum(j,x(j)*sum(j1,Q(j,j1)*x(j1))) + sum(j,c(j)*x(j));

dual(i).. sum(j, A(i,j)*x(j)) =g= b(i);

model qp /cost,dual/;

solve qp using nlp minimizing obj;

execute_unload %matout%;

This model can be executed directly at the command prompt by the following
command

gams qp (for Unix/Linux)
or
gams.exe qp (for Windows)

or the user can simply hit the run button in the GAMSIDE. The optimal value
is 0.5. In order to run the same model within MATLAB and return the solution
vector x back into the MATLAB workspace, no change is required to the GAMS
file. In MATLAB, all you have to do is to execute the following command:

>> x = gams(’qp’);

This command will first collect the input structure data and create ’mat-
data.gdx’ and ’matdata.gms’ that contains include statements for the symbols
written in a file matdata.gdx. In the previous example there is no structural
input, so an empty ’matdata.gdx’ file will be created and ’matdata.gms’ will
have just have a load statement for the GDX file but no load statements for any
symbol. This is done to prevent any undesirable loading of data in the main
model if there had already existed a ’matdata.gdx’ or ’matdata.gms file’. After
creating these two files then the gams routine will execute “gams qp” using a

12

system call. When this model is executed, another file ’matsol.gdx’ will be cre-
ated because of execute unload statement in the last line of the model. Here it
should be noted that any model that you want to execute using the MATLAB
gams routine should contain

$set matout "’fileName.gdx’, x1, x2 ";

either as the first line, or somewhere near the start of the model file. This is a
standard GAMS $set statement, setting the value of the local variable ’matout’.
The reason to have this statement near the start of the gams file is that the
gams routine searches the file from the beginning for “$set matout” in the gams
file. As these files can be very large, it is wise to have this statement near the
start of the file. In this statement ’fileName’ is the gdx file name that will be
created containing symbols ’x1’, ’x2’, etc. These symbols can then be exported
to MATLAB. The last line of the model should always be

execute_unload %matout%;

The purpose of setting the first and last line of the model in this manner
is to specify what data the user wants to export to MATLAB in a “header”
of the model. As MATLAB does not give any information about the output
arguments except the number of expected arguments, we have to specify what
data to export to MATLAB in the GAMS model with minimum modification to
the existing model. In the previous example, there is only one output argument,
thus the gams routine will get data for its first element from the output gdx file
and store it in the MATLAB output argument.

If there are more than one output arguments:

>> [x, u] = gams(’qp’);

then the gams routine will read the output gdx file and store its first element
information of the GDX file as the first output argument of MATLAB i.e.’x’ and
the second element information of the GDX file in the second output argument
of MATLAB i.e.’u’ and so on. If the number of MATLAB output arguments is
greater than the number of elements in the GDX file then gams will throw an
error.

5.1 Input Structure

As mentioned earlier, the gams routine takes input arguments in structured
form. It allows two different types of structure input. One contains the symbol
data similar to the wgdx input structure, to be exported to the GDX file. The
other structure will just have two string fields ’name’ and ’value’. e.g.

>> s.name = ’Q’;
>> s.val = eye(3);
>> s.form = ’full’;
>> m = struct(’name’,’m’,’val’,’2’);
>> [x] = gams(’qpmcp’,s, m);

13

In this example both ’s’ and ’m’ are structures but ’m’ has only two fields and
both are strings. The gams routine will use the ’s’ structure to create a ’mat-
data.gdx’ file and ’m’ to modify the execution command line to include “–m=2”
at the end i.e. a command that will executed will be “gams qpmcp –m=2”.

The structure ’s’ is the same as the input structure for wgdx but with two
important differences. Firstly, it can be seen in the above example that ’s’
doesn’t have any ’type’ field. In wgdx we assume the type to be ’set’ by de-
fault, but in the gams routine the type is assumed to be ’parameter’ by default.
The second change is an optional additional field (in addition to those given in
Section 4.2.1) for the input structure called “load”.

8. load
It is a string input representing how the corresponding data will be loaded
into the GAMS program. Depending on the value of the global option
“gamso.input” (see next section) the input data will be read into GAMS
in different ways. Suppose the input structure “s” has a “name” field of
‘foo’. By default (where gamso.input = ’compile’), the file matdata.gms
will

$loadR foo

The GAMS parameter (or set) foo will be replaced by the data that is
in the “matdata.gdx” container and called “foo”. If the data has been
initialized before in the model, this will replace that intial data with the
new data from “matdata.gdx”. The option can also be explicitly set using

s.load = ‘replace’

There are two other compile time load options, namely ‘initialize’ and
‘merge’. The first is only valid if the parameter values have not been
initialized in the GAMS file, otherwise an error is thrown. It uses the
GAMS syntax

$load foo

The merge option is valid when the GAMS file being run has already
initialized the parameter values. The new values in the MATLAB struc-
ture “s” are merged into the parameter simply overwriting existing values
with the new values given. Explicitly, the “matdata.gms” file contains the
statement

$loadM foo

to direct GAMS accordingly.

Finally, if gamso.input = ‘exec’, the loading will occur at execution time.
In this case, s.load = ‘initialize’ is not a valid input, the default setting is
s.load = ‘replace’ which carries out

14

execute_load "matdata.gdx" foo

and the alternative setting s.load = ‘merge’ carries out

execute_loadpoint "matdata.gdx" foo

In this way, the data is loaded at execution time and performs an appro-
priate replace or merge.

5.2 Global input to change default behaviour

Until now we have seen how to specify different input to the gams routine and
in this section we will see how to change the default behaviour of a gams call.
This can be done by creating a structure “gamso” in the current workspace and
adding different fields to that structure. There are currently nine fields that can
be set in that structure to affect the behaviour of the program. Except the uels
field, all other string fields take case insensitive data. These are as follows:

• gamso.output
By default, output of the gams routine will be in structure form but it
might be the case that a user is only interested in the data matrix i.e. val
field of that structure. This can be done by setting gamso.output as ’std’.
This will give only the value matrix as output. If this is not set to ’std’
then output will be in the structure form described in the wgdx section.

>> gamso.output = ’Std’;
>> x = gams(’qp nlp=baron’)

x =
0.5000

• gamso.input
By default, the interface updates data at compile time. Thus, if execution
time updates are made to the parameters before the line “$include mat-
data.gms” these may override the data that is provided in “matdata.gms”
(i.e. from the command line). This may not be desirable. If you wish to
perform execution time updates to the data, you should set gamso.input
to ’exec’. An example is given in do exec.m. To understand this example,
the reader should inspect the exec.lst file at each pause statement to see
the effects of the different options.

• gamso.write data
If this is set to “no”, then all parameters on the call to gams are ignored,
except the program name. This is useful for dealing with large datasets.
Consider the following invocation:

x = gams(’largedata’,’A’);
y = gams(’resolve’,’A’);

15

The first call generates a file “matdata.gms” containing the elements of the
matrix A for use in the largedata.gms program. The second call rewrites a
new “matdata.gms” file that again contains A. If we wish to save writing
out A the second time we can use the following invocation:

x = gams(’largedata’,’A’);
gamso.write_data = ’no’;
y = gams(’resolve’,’A’);
clear gamso;

or the equivalent invocation:

x = gams(’largedata’,’A’);
gamso.write_data = ’no’;
y = gams(’resolve’);
clear gamso;

• gamso.show
This is only relevant on a Windows platform. This controls how the “com-
mand box” that runs GAMS appears on the desktop. The three possible
values are:

– ’minimized’ (default): The command prompt appears iconified on
the taskbar.

– ’invisible’ : No command prompt is seen.

– ’normal’ : The command prompt appears on the desktop and focus
is shifted to this box.

• gamso.path
This option is used to specify fully qualified path for the gams executable.
This is very useful if you have multiple versions of GAMS installed on
your system and want to make sure which version you are running for the
gams call. e.g.

>> gamso.path = ’C:\Program Files\GAMS23.4\gams.exe’;

The output of gams is similar to rgdx but unlike the rgdx gams routine it
doesn’t take input specific to a particular symbol. Thus it becomes important
to implement a way to change the default behaviour of the output. This can
be acheived by adding following field to the global structure ’gamso’. All these
fields behave similar to that described in rgdx and take the same input as of
rgdx.

• gamso.compress

• gamso.form

16

• gamso.uels

• gamso.field

This is a global option however.

6 Examples

In this section we will discuss a few examples of the MATLAB and GAMS
interface. We will give a simple example of a nonlinear optimization problem
that would benefit from this capability and describe the steps that are needed
in order to use our interface in this application.

• Special values
Following example shows how special values are handled by this interface.
It can be seen that rgdx can retreive all these values from GDX file and
display them appropriately in MATLAB.

>> s.name = ’special’;
>> s.form = ’full’;
>> s.compress = true;
>> x = rgdx(’sample’, s)

x =

name: ’special’
type: ’parameter’
dim: 1
val: [4x1 double]

form: ’full’
uels: {{1x4 cell}}

>> x.val

ans =

-Inf
NaN

3.141592653589793
Inf

• Variables and Equations
In an optimization problem, we are not only interested in level value of
variables and equations but also in their marginal values, lower and upper
bounds. This interface gives its user ability to read any of these values into
MATLAB. By default rgdx and gams routines will read the level value of

17

equations and variables but this can be changed very easily by using ’field’
in input structure. In gams call user can also specify this in ’$set matout’
statement. e.g.

$set matout "’matsol.gdx’, x.m, dual.lo=dl ";

In this case the marginal value of variable ’x’ will be read and lower bound
of dual variable will be read and stored in ’dl’.

• Text string and Text elements
GAMS allows its user to enter text string and explanatory text elements
and all GDX file contain this information as well. Following example shows
how to get these text elements in MATLAB.

>> s1.name = ’el’;
>> s1.te = true;
>> s1.ts = true;
>> s1.compress = true

s1 =

name: ’el’
te: 1
ts: 1

compress: 1

>> z = rgdx(’sample’, s1)

z =

name: ’el’
type: ’set’
dim: 2
val: [3x2 double]

form: ’sparse’
uels: {{1x2 cell} {1x2 cell}}
ts: ’This is 2D set with text elements’
te: {2x2 cell}

>> z.te

ans =

’element1’ ’element2’
’2.j1’ []

18

>> z.val

ans =

1 1
1 2
2 1

• String elements
One piece of information that may be needed within MATLAB is the mod-
elstat and solvestat values generated by GAMS for the solves that it per-
formed. This is easy to generate, and is given as the example do status.m.
This example is generated by taking the standard gamslib trnsport exam-
ple, and adding the following lines to the end:

$set matout "’matsol.gdx’, returnStat, str ";
set stat /modelstat,solvestat/;
set str /’grunt’, ’%system.title%’/;
parameter returnStat(stat);
returnStat(’modelstat’) = transport.modelstat;
returnStat(’solvestat’) = transport.solvestat;
execute_unload %matout%;

Note that the relevant status numbers are stored in GAMS into the pa-
rameter returnStat which is then written to matsol.gdx and read back into
MATLAB using same technique as of rgdx.

>> gamso.output = ’std’;
>> gamso.form = ’full’;
>> gamso.compress = true;
>> s = gams(’trnsport’)

s =

1
1

• Advanced Use: Plotting

One of the key features of the GAMS/MATLAB interface is the ability to
visualize optimization results obtained via GAMS within MATLAB.

Some simple examples are contained with the program distribution. For
example, a simple two dimensional plot with four lines can be carried out
as follows. First create the data in GAMS and export it to MATLAB
using gams routine.

19

$title Examples for plotting routines via MATLAB

$set matout "’matsol.gdx’, a, t, j, sys ";

set sys /’%system.title%’/;
set t /1990*2030/, j /a,b,c,d/;

parameter a(t,j);
a("1990",j) = 1;
loop(t, a(t+1,j) = a(t,j) * (1 + 0.04 * uniform(0.2,1.8)););

parameter year(*); year(t) = 1989 + ord(t);

* Omit some data in the middle of the graph:

a(t,j)$((year(t) gt 1995)*(year(t) le 2002)) = NA;

execute_unload %matout%;

We make an assumption that the user will write the plotting routines in
the MATLAB environment. To create the plot in MATLAB, the sequence
of MATLAB commands in Figure 1 should be input (saved as do plot.m):

Figure 2 is an example created using this utility (and print -djpeg simple).

MATLAB supports extensive hard copy output or formats to transfer
data to another application. For example, the clipboard can be used to
transfer meta files in the PC enviroment, or encapsulated postscript files
can be generated. The help print command in MATLAB details the
possibilities on the current computing platform.

Scaling of pictures is also most effectively carried out in the MATLAB
environment. An example of rescaling printed out is given in Figure 3.

Note that the output of this routine is saved as a jpeg file “rescale.jpg”.

Other examples of uses of the utility outlined in this paper can be found
in the “m” files:

do_ehl
do_obstacle
taxplot
plotit
plotngon

that are contained in the distribution.

20

gamso.output = ’std’;
gamso.compress = true;
gamso.form = ’full’;
[a,xlabels,legendset,titlestr] = gams(’simple’);
figure(1)

% Plot out the four lines contained in a; format using the third argument
plot(a,’+-’);

% only put labels on x axis at 5 year intervals
xtick = 1:5:length(xlabels{1});
xlabels{1} = xlabels{1}(xtick);
set(gca,’XTick’,xtick);
set(gca,’XTickLabel’,xlabels{1});

% Add title, labels to axes
title(titlestr{1});
xlabel(’Year -- time step annual’);
ylabel(’Value’);

% Add a legend, letting MATLAB choose positioning
legend(legendset{1},0);

% match axes to data, add grid lines to plot
axis tight
grid

Figure 1: Simple plot in MATLAB

21

Figure 2: Simple figure created using interface

do_plot;
fpunits = get(gcf,’PaperUnits’);

set(gcf,’PaperUnits’,’inches’);
figpos = get(gcf,’Position’);
pappos = get(gcf,’PaperPosition’);
newpappos(1) = 0.25;
newpappos(2) = 0.25;
newpappos(3) = 4.0;
% get the aspect ratio the same on the print out
newpappos(4) = newpappos(3)*figpos(4)/figpos(3);

set(gcf,’PaperPosition’,newpappos),
print -djpeg100 rescale.jpg
set(gcf,’PaperPosition’,pappos);
set(gcf,’PaperUnits’,fpunits);

Figure 3: Rescaling printed output from MATLAB

22

7 Acknowledgements

The author would like to thank Alexander Meeraus of GAMS corporation for
constructive comments on the design and improvement of this tool.

23

